

10-port sector antenna, 2x 694–960 and 8x 1695–2690 MHz, 65° HPBW, 5x RET with manual override. Internal Bias-T on low band Port 1.

- Integrated Internal Remote Electrical Tilt (RET), with independent control of electrical tilt with manual override on all arrays
- All Internal RET actuators are connected in "Cascaded SRET" configuration
- Uses the 4.3-10 connector which is 40 percent smaller than the 7-16 DIN connector
- AISG 2.0 interfaces are via integrated internal smart bias tee on low band (694–960 MHz) RF Port 1 and a single pair of AISG 8-pin DIN input (male) and output (female) connectors

OBSOLETE

This product was discontinued on: March 31, 2021

General Specifications

Antenna Type Sector

Band Multiband

Grounding TypeRF connector body grounded to reflector and mounting bracket

Performance Note

Outdoor usage | Wind loading figures are validated by wind tunnel

measurements described in white paper WP-112534-EN

Radome MaterialFiberglass, UV resistantRadiator MaterialLow loss circuit board

Reflector Material Aluminum

RF Connector Interface 4.3-10 Female
RF Connector Location Bottom | Top

RF Connector Quantity, high band 8
RF Connector Quantity, low band 2

RF Connector Quantity, per location as listed $4 \mid 6$

RF Connector Quantity, total

Remote Electrical Tilt (RET) Information

RET Interface 8-pin DIN Female | 8-pin DIN Male

RET Interface, quantity 1 female | 1 male

Input Voltage 10-30 Vdc

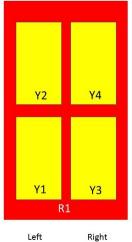
COMMSCOPE®

Internal Bias Tee Port 1

Internal RET High band (4) | Low band (1)

Power Consumption, idle state, maximum 2 W

Power Consumption, normal conditions, maximum 13 W


Protocol 3GPP/AISG 2.0 (Single RET)

Dimensions

Width 350 mm | 13.78 in Depth 208 mm | 8.189 in Length 2533 mm | 99.724 in 39 kg | 85.98 lb

Net Weight, without mounting kit

Array Layout

Bottom

Array	Freq (MHz)	Conns	RET (SRET)	AISG RET UID
R1	694-960	1-2	1	ARxxxxxxxxxxxxxxxxxxx1
Y1	1695-2690	3-4	2	ARxxxxxxxxxxxxx2
Y2	1695-2690	5-6	3	ARxxxxxxxxxxxxx3
Y3	1695-2690	7-8	4	ARxxxxxxxxxxxxx4
Y4	1695-2690	9-10	5	ARxxxxxxxxxxxxxx5

(Sizes of colored boxes are not true depictions of array sizes)

Electrical Specifications

Impedance 50 ohm

Operating Frequency Band 1695 - 2690 MHz | 694 - 960 MHz

Polarization ±45°

Electrical Specifications

Frequency Band, MHz	694-790	790-890	890-960	1695-1920	1920-2180	2300-2690
Gain, dBi	16	16.5	16.8	16 9	17 4	18 1

Page 2 of 4

Beamwidth, Horizontal, degrees	69	68	66	62	62	61
Beamwidth, Vertical, degrees	10	8.8	8.1	8.1	7.2	5.9
Beam Tilt, degrees	0-10	0-10	0-10	0-10	0-10	0-10
USLS (First Lobe), dB	18	18	18	18	18	18
Null Fill, dB	-22	-22	-22	-22	-22	-22
Front-to-Back Ratio at 180°, dB	31	32	33	34	37	39
Isolation, Cross Polarization, dB	28	28	28	30	30	30
Isolation, Inter-band, dB	30	30	30	30	30	30
VSWR Return loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-150	-150	-150	-150	-150	-150
Input Power per Port, maximum, watts	300	300	300	250	250	250

Electrical Specifications, BASTA

Frequency Band, MHz	694-790	790-890	890-960	1695-1920	1920-2180	2300-2690
Gain by all Beam Tilts, average, dBi	15.8	16.4	16.8	16.6	17.2	17.9
Gain by all Beam Tilts Tolerance, dB	±0.5	±0.2	±0.1	±0.4	±0.4	±0.3
Gain by Beam Tilt, average, dBi	0° 15.8 5° 15.8 10° 15.7	0° 16.4 5° 16.4 10° 16.4	0° 16.8 5° 16.8 10° 16.8	0° 16.6 5° 16.6 10° 16.7	0° 17.2 5° 17.3 10° 17.2	0° 17.9 5° 17.9 10° 17.8
Beamwidth, Horizontal Tolerance, degrees	±1.1	±0.7	±1.5	±3.1	±2.4	±5.8
Beamwidth, Vertical Tolerance, degrees	±0.6	±0.4	±0.3	±0.6	±0.5	±0.4
USLS, beampeak to 20° above beampeak, dB	18	18	18	18	18	18
Front-to-Back Total Power at 180° ± 30°, dB	26	26	27	27	27	29
CPR at Boresight, dB	16	17	17	17	19	18
CPR at Sector, dB	12	13	15	12	12	9

Mechanical Specifications

 Wind Loading @ Velocity, frontal
 445.0 N @ 150 km/h (100.0 lbf @ 150 km/h)

 Wind Loading @ Velocity, lateral
 379.0 N @ 150 km/h (85.2 lbf @ 150 km/h)

 Wind Loading @ Velocity, maximum
 942.0 N @ 150 km/h (211.8 lbf @ 150 km/h)

Page 3 of 4

Wind Loading @ Velocity, rear 472.0 N @ 150 km/h (106.1 lbf @ 150 km/h)

Wind Speed, maximum 241 km/h (150 mph)

Packaging and Weights

 Width, packed
 436 mm | 17.165 in

 Depth, packed
 320 mm | 12.598 in

 Length, packed
 2720 mm | 107.087 in

 Weight, gross
 61 kg | 134.482 lb

Regulatory Compliance/Certifications

Agency Classification

CHINA-ROHS Above maximum concentration value

ISO 9001:2015 Designed, manufactured and/or distributed under this quality management system

ROHS Compliant/Exempted UK-ROHS Compliant/Exempted

Included Products

T-125-GL – Adjustable Tilt Pipe Mounting Kit for 2.0"-4.5" (50-115mm) OD round members for panel

antennas.

* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance

