# **Performance Specification**

FOSC - Modular Splice Closure



| Date       | Edition | Status | Prepared by      | Reviewed by  | Approved by |
|------------|---------|--------|------------------|--------------|-------------|
| 5 Oct 2021 | A       | Active | Mohamed<br>Aznag | Daniel Daems |             |
|            |         |        |                  |              |             |
|            |         |        |                  |              |             |
|            |         |        |                  |              |             |





## Performance Specification for the FOSC Modular Splice Closure

| Content                                          | 1  |  |  |  |
|--------------------------------------------------|----|--|--|--|
| 1 Scope                                          | 2  |  |  |  |
| 2 Product description 3                          |    |  |  |  |
| 3 Requirements                                   | 4  |  |  |  |
| 3.1 General requirements                         | 4  |  |  |  |
| 3.2 Test sample preparation                      | 5  |  |  |  |
| 3.3 Material requirements                        | 7  |  |  |  |
| 3.4 Storage and transportation requirements      | 8  |  |  |  |
| 3.5 Sealing performance pass/fail criteria       | 8  |  |  |  |
| 3.6 Sealing performance requirements             | 9  |  |  |  |
| 3.6 Sealing performance requirements (continued) | 10 |  |  |  |
| 3.6 Sealing performance requirements (continued) | 11 |  |  |  |
| 3.6 Sealing performance requirements (continued) | 12 |  |  |  |
| 3.7 Optical pass/fail criteria                   | 13 |  |  |  |
| 3.8 Optical performance requirements             | 14 |  |  |  |
| 3.8 Optical performance requirements (continued) | 15 |  |  |  |
| 4 Quality assurance provisions                   | 16 |  |  |  |
| 4.1 Manufacturing follow-up                      | 16 |  |  |  |
| 4.2 Responsibility for quality                   | 16 |  |  |  |
| 4.3 Qualification conformance                    | 16 |  |  |  |
| 4.4 Manufacturing follow-up                      | 16 |  |  |  |
| 5 References                                     | 17 |  |  |  |

# COMMSCOPE®

## 1 Scope

The FOSC Modular Splice Closure is a combination of a fiber management system and a protective housing designed to provide environmental and mechanical protection for splices and connections between fiber optic cables in the outside plant.

The product is designed to operate in outdoor aerial, handhole and direct buried up to 5 meter depth environments as described in the following standards:

- ETSI EN 300 019-2-4 T4.1 Stationary use at non-weather protected locations
- ETSI EN 300 019-2-8 Stationary use at underground locations
- IEC 61753-1 Ed2 (2018) Categories A, G and S

The described tests and severities in this document are selected to meet the requirements of the following performance standards:

- IEC 61753-111-07 (2021) Sealed closures for category A Aerial
- IEC 61753-111-08 (2021) Sealed closures for category G Ground
- IEC 61753-111-09 (2021) Sealed closures for category S Subterranean
- EN 50411-2-4 (2021) Sealed dome fibre splice closures for category S and A
- ITU-T L.201 (2021) Performance requirements for passive optical nodes: Sealed closures for outdoor environments

The test methods are conform international standards of the IEC 61300 series.

Quality assurance provisions and a list of norms complete the document.

The document is intended for use:

- by Commscope Connectivity for internal qualification and re-qualification purposes
- by other organizations to:
  - provide information on product performance
  - act as a guide for test programs
  - analyze and compare product performance in, for example, tender situations
- by Commscope Connectivity customers worldwide, except in countries where a customized document has been prepared.



Performance Specification FOSC Modular Splice Closure Page 3 of 20 RUD 5598 A 5 Oct 2021

## **2 Product description**

The FOSC-Modular Splice Closures are designed to operate in categories A (Aerial), G (Ground) and S (Subterannean) as characterized by IEC 61753-1 Ed2 (2018).

Following operating conditions are allowed: Operational temperature range: -40°C to +65°C Operational humidity range: 0%RH to 100%RH Continuous immersion till 5 meters of water head (IP68 according to IEC 60529)





## **3 Requirements**

#### 3.1 General requirements

The FOSC-Modular Splice Closure shall be capable of meeting the functional requirements as specified in the following clauses when the product is installed in accordance with the applicable installation instructions and tested according to the methods of test described in this document.

The components of the kits shall be free of defects that would adversely affect product performance.

The polymeric materials of the closure shall be fungi resistant.

The effect of UV on the outer polymeric materials shall not adversely affect product performance or cause a clear colour change.

Metal parts of the closure shall be resistant to the corrosive influences they may encounter in normal use. A color change due to passivation is allowed.

All fiber cable elements shall be capable of being routed in such a way that no transmission degradation will be seen when accessing these cable elements.

The bend radius of the fibers after installation shall be according to the minimum bend radius specified in IEC 61756-1 Ed2 for high reliability networks (failure probability target <  $10^{-7}$  and macrobend loss of ITU-T G.652.D fibers <0.05 dB at 1625 nm. The nominal bend radius of the fibers after installation shall be 30 mm throughout the whole closure system. A minimum bend radius of 20 mm is allowed when the stored fiber length per incoming fiber is less than 2 meter (e.g. in the high density or mass splice tray).

The FOSC-Modular Splice Closure shall allow easy fiber access and addition of fiber management modules during installation or maintenance,

The splice trays shall be able to accommodate sufficient fiber on either side of stored splices to allow 10 re-splices.

Access compartments shall have no sharp edges that could damage installers or cables. All device materials that are likely to come into contact with personnel shall be non-toxic and shall not be a potential environmental hazard. All materials shall be RoHS and REACH compliant.

The closures shall be installable at temperatures between -5°C and +45°C.

The closure shall be handled at temperatures between -15°C and +45°C.

By meeting the requirements in this document the installed closure will automatically meet the IP 68 protection rating according to IEC 60529 (1989/AMD2:2013):

- IP 6X: Fully protected against dust

- IP X8: Continuous immersion in water

Closures shall withstand an impact with energy 20 J over the temperature range -15°C to +45°C. Note: IEC 61753-1 Ed2 and the IEC 61753-111-series do not refer to the IEC 62262 (2002) IK10 test method for fiber optic protective housings. The more severe test method IEC 61300-2-12: 2009 Method B is used.

The products and packaging shall be constructed in such a way that the packaged product shall meet the transportation and storage performance requirements for temperature and humidity in ETSI EN 300 019-2-2 class T2.3 (Public transportation) and ETSI EN 300 019-2-1 class 1.2 (Weather protected, not temperature-controlled storage locations).

Each kit shall have a label with the following information:

- Supplier's name
- Product designation
- Batch number



Performance Specification FOSC Modular Splice Closure

#### 3.2 Test sample preparation

All installations shall be performed according to CommScope standard installation instructions and carried out at IEC 61300-1 standard laboratory conditions of  $+23^{\circ}C \pm 5^{\circ}C$ .

#### Sealing test sample preparation:

For each sealing test at least 3 test samples shall be used. All test samples shall be installed with cables. The length of the cables extending the closure shall be long enough to perform the tests (typical cable length is 1 m). The free ends of the cables shall be sealed with a cap. Test samples shall include both maximum and minimum cable diameters as specified in the applicable installation instructions. It is not necessary to use all cable ports. If relevant, open (non-used) cable ports shall be sealed with a plug.

All sealing performance test samples shall be provided with an air pressure test access valve.

When a test is specified at another ambient temperature, samples shall be preconditioned with the correct test pressure for a period of at least 4 hours at that temperature.

Internal pressurization is achieved with an air supply within  $\pm 2$  kPa of the specified overpressure value. The pressure and temperature shall be recorded prior the test. Pressure measurements before and after the test shall be carried out with the same pressure measurement equipment and at the same atmospheric conditions (temperature and pressure). When a difference is observed in atmospheric conditions after the test the pressure shall be calculated according to the relationship: p.V/T=cte.

#### Optical test sample preparation:

Due to the complexity of optical test sample, a minimum of 1 sample shall be used per test. The various tests can be performed sequentially on the same test sample. There is no mandatory sequence defined, but the sequence shall be reported in the test report.

Fiber type in the cables used for the test samples is ITU-T G.652.D or ITU-T G.657.A1 single-mode fiber with nominal mode field diameter between 9.0  $\mu$ m and 9.2  $\mu$ m as listed in the table below. By passing the optical performance tests in section 3.7 the product will be automatically qualified for use with the other fiber types ITU-T G.657.A1, A2 and B3 by similarity.

| Fiber characteristics used for optical test sample |                                           |  |
|----------------------------------------------------|-------------------------------------------|--|
| Fiber type:                                        | ITU-T G.652.D or IEC 60793-2-50 B-652.D   |  |
|                                                    | ITU-T G.657.A1 or IEC 60793-2-50 B-657.A1 |  |
| Proof stress strain test:                          | ≥1 %                                      |  |
| Mode field diameter at 1310 nm:                    | Nominal value between 9.0 µm and 9.2 µm   |  |
|                                                    | Tolerance $\pm$ 0.4 µm                    |  |
| Cabled fiber cut off wavelength:                   | ≤ 1260 nm                                 |  |
| Cladding diameter:                                 | 125.0 $\mu$ m $\pm$ 1.0 $\mu$ m           |  |
| Non colored coating diameter:                      | 245 $\mu$ m $\pm$ 10 $\mu$ m              |  |
| Colored coating diameter                           | 250 μm ± 15 μm                            |  |

The selected cables shall be suitable for the specified operating temperature range. Both extremities of a looped feeder cable with loose tubes are terminated in a track/spur joint closure that will hold the cable jacket and central strength member in place (see Figure 1). The length of the looped feeder cable has to be longer than the "dead zone" of the OTDR. Typically, a cable length of 25 m is used to reproduce the cable jacket shrinkage effect as it might occur in reality and also allowing location of the potential causes of optical losses and distinguish whether a change in signal is induced by the fiber management system in a single location or is distributed evenly over the whole circuit length.

In case connectors are used in the optical test sample, the connectors and adapters shall meet the requirements of RUD 5416.



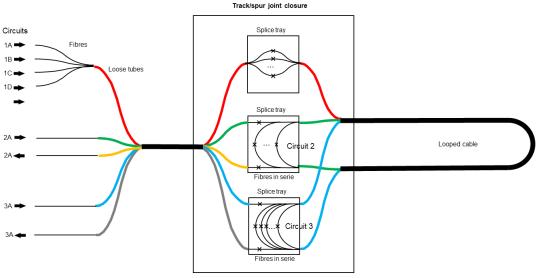



Figure 1 – Preparation optical test sample

Before installing the distribution closure the circuit 3 shall be connected to the transient loss measurement equipment to monitor the change in attenuation during and after the installation of the districution closure (see installation test in section 3.8).

In the middle of the looped feeder cable with loose tubes, the cable jacket will be removed (= window cut) over a distance according to the installation instructions and the looped feeder cable will be installed in the distribution closure (see Figure 2).

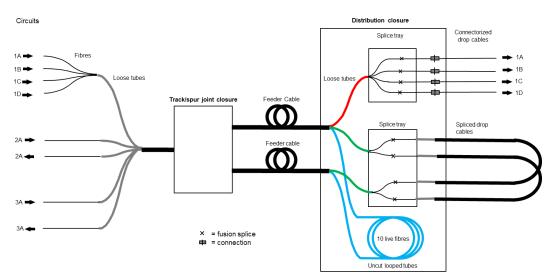



Figure 2 - Test sample configuration

Three (3) circuit types are built as shown in Figure 2.

- Type 1: Point-to-point connections (with connectors)
- Type 2: Point-to-point drop cables (fusion splices)
- Type 3: Looped uncut fibers or tubes (window cut)

For circuits 2 and 3 in the track/spur joint closure the fibers from one feeder cable end are spliced to the fibers of the other feeder cable end in such a way that light will sequentially flow through an optical circuit of random selected fibers from the same loose tube in the looped feeder cable.

In the distribution closure the loose tubes of the circuits 1 and 2 are cut and routed to the splice trays. The remaining non-active uncut loose tubes are stored inside closure (in the loose tube storage area). For circuit 2, the ends of the looped drop cables with a length of at least 12 m shall be are spliced to the relevant fibers of the feeder cables. Space shall be provide for a non-active looped drop cable that will be added during the intervention/reconfiguration test (procedure listed in the table of functional optical requirements, mechanical tests, reconfiguration).



### 3.3 Material requirements<sup>1</sup>

| Test                                                                                | Method and condition                                                                      | ons                                                                                                                                                                                                                                                 | Acceptance criteria<br>to be checked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Material tests                                                                      |                                                                                           |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| UV resistance of<br>outer polymeric<br>materials<br>ISO 4892-3<br>or ASTM G.154     | UV source:<br>Exposure cycles:<br>- UV-light:<br>- Condensation:<br>Exposure time:        | Lamp type 1A Fluorescent lamps<br>(UVA 340 nm)<br>Cycle 1: Alternating UV and<br>condensation cycle<br>8 h at $(+60 \pm 3)$ °C,with UV light<br>4 h at $(+50 \pm 3)$ °C; dark<br>Atr least 2160 h<br>Material tests are done on<br>molded dumbbells | Visual examination<br>The average change in mechanical<br>properties (tensile strength at yield<br>and elongation at yield) shall be<br>less than 20%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Fungus resistance<br>(Mould growth)<br>ISO 846<br>or IEC 60068-2-10<br>or ASTM G.21 | Strains:<br>Inoculation<br>conditions:<br>Temperature:<br>Relative humidity:<br>Duration: | 2 mixed spore suspensions<br>according to ISO846 and<br>ASTM G21<br>Test severity 1<br>(29 ± 1)°C<br>> 90%<br>28 days<br>Material tests are done on<br>molded dumbbells                                                                             | Visual examination:<br>When a rating 0 is obtained, the<br>material is considered fungus<br>resistant and no further testing is<br>required.<br>When a rating of 1 or 2 is obtained,<br>the effect of mould growth shall be<br>evaluated by measuring a<br>representative performance<br>property (e.g. tensile strength at<br>yield and elongation at yield for<br>thermoplastic polymers, a<br>compression set, a Shore A<br>hardness for elastic materials, or<br>any other test which checks a<br>relevant property) both before and<br>after exposure of the material<br>samples. The average change in<br>mechanical characteristics of the<br>tested material samples shall be<br>less than 20 %.<br>A rating of more than 2 is not<br>allowed. |

<sup>&</sup>lt;sup>1</sup> Material tests are done on molded dumbbells



## 3.4 Storage and transportation requirements <sup>2</sup>

| Test                                          | Method and conditi                    | ons                                 | Acceptance criteria<br>to be checked                                                                                                                       |
|-----------------------------------------------|---------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental storage                         | e and transport tests                 | of packaged products                |                                                                                                                                                            |
|                                               |                                       |                                     |                                                                                                                                                            |
| Cold<br>IEC 61300-2-17                        | Temperature:<br>Duration:             | (-40 ± 2)°C<br>96 h                 | Visual examination<br>No defects which would adversely<br>affect the installation or affect<br>product performance and functionality<br>after installation |
|                                               |                                       |                                     |                                                                                                                                                            |
| Dry heat<br>IEC 61300-2-18                    | Temperature:<br>Humidity<br>Duration: | (+70 ± 2)°C<br>Uncontrolled<br>96 h | Visual examination<br>No defects which would adversely<br>affect the installation or affect<br>product performance and functionality<br>after installation |
|                                               |                                       |                                     |                                                                                                                                                            |
| Damp heat (steady<br>state)<br>IEC 61300-2-19 | Temperature:<br>Humidity<br>Duration: | (+40 ± 2)°C<br>(93 ± 3)%RH<br>96 h  | Visual examination<br>No defects which would adversely<br>affect the installation or affect<br>product performance and functionality<br>after installation |

### 3.5 Sealing performance pass/fail criteria

| Performance<br>criteria                                    | Method and conditions                                                                             |                                                                                                                                                                                                             | Requirements                                                                                            |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Sealing performance                                        | e pass/fail criteria                                                                              |                                                                                                                                                                                                             |                                                                                                         |
| Pressure loss<br>during test<br>IEC 61300-2-38<br>Method B | Internal pressure:<br>Temperature:<br>Elapsed time:                                               | $(40 \pm 2)$ kPa<br>At specified test temperature<br>< 12 h between initial and final<br>measurement                                                                                                        | Difference in pressure before & after the test $\leq 2$ kPa measured at the same atmospheric conditions |
| Sealing after test<br>IEC 61300-2-38<br>Method A           | Internal pressure:<br>Test temperature:<br>Test time:<br>Depth:<br>Pre-conditioning<br>procedure: | $(40 \pm 2)$ kPa<br>$(23 \pm 5)$ °C<br>15 minutes<br>Just below water surface<br>Sample shall be conditioned to<br>room temperature for at least<br>4 h if it was tested at a<br>different test temperature | No continuous emission of bubbles                                                                       |
| Visual<br>examination<br>IEC 61300-3-1                     | Examination of product with naked eye.                                                            | Inspection with the naked eye<br>for displacements, flaws,<br>defects, cracks or impurities<br>that could impair functionality.                                                                             | No defects which would adversely affect product performance                                             |

<sup>2</sup> Storage and transportation tests are performed on non-installed products (as they are appearing in the package)



### 3.6 Sealing performance requirements

| Test                                                                     | Method and conditions                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Acceptance criteria<br>from clause 3.5 to be<br>checked                                                                        |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Sealing performat                                                        | nce tests                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                |
| Assembly /<br>disassembly for<br>categories A<br>and G<br>IEC 61300-2-33 | Number of re-entries:<br>Aging cycle between<br>each re-entry:<br>Temperature range:<br>- Dwell time:<br>- Transition:<br>Test pressure: | 5<br>minimum 1 temperature cycle<br>$-40^{\circ}C/+65^{\circ}C$<br>4 h<br>1 $^{\circ}C/min$<br>(20 ± 2) kPa overpressure regulated                                                                                                                                                                                                                                                                                                                                                                                                                                               | Visual examination<br>Sealing performance<br>after closing the<br>closure.                                                     |
| Assembly /<br>disassembly for<br>category S<br>IEC 61300-2-33            | Number of re-entries:<br>Aging cycle between<br>each re-entry:<br>Temperature range:<br>- Dwell time:<br>- Transition:<br>Test pressure: | 5<br>minimum 1 temperature cycle<br>$-30^{\circ}C/+60^{\circ}C$<br>4 h<br>1 $^{\circ}C/min$<br>(40 ± 2) kPa overpressure regulated                                                                                                                                                                                                                                                                                                                                                                                                                                               | Visual examination<br>Sealing performance<br>after closing the<br>closure.                                                     |
| Cable retention<br>IEC 61300-2-4                                         | Test temperatures:<br>Test pressure:<br>Force per cable:<br>Point of load application <sup>3</sup> :<br>Rate:<br>Duration:               | $(-15 \pm 2)$ °C and $(+45 \pm 2)$ °C<br>$(40 \pm 2)$ kPa overpressure sealed off at test<br>temperature<br>20 (N/mm) x Ø <sub>cable</sub> (mm) for terminations<br>with CTU types S, L or G<br>10 (N/mm) x Ø <sub>cable</sub> (mm) for other cable<br>terminations with metal bracket<br>For non-circular cables, Ø <sub>cable</sub> =<br>circumference/pi<br>The distance measured from the cable port or<br>seal of the closure to the point of the load<br>application shall be 400 mm<br>0 to full load in 15 s, smoothly applied<br>1 h per cable and per test temperature | Visual examination<br>Sealing performance<br>(pressure loss) during<br>test<br>Sealing performance<br>after completion of test |

<sup>&</sup>lt;sup>3</sup> If an external cable attachment bracket is an integrated part of the protective housing, the distance of application is measured from end of bracket.



## 3.6 Sealing performance requirements (continued)

| Test                                         | Method and condition                                                                                                                                                        | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Acceptance criteria from<br>clause 3.5 to be checked                                               |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Sealing performa                             | nce tests (continued)                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                    |
| Cable axial<br>compression<br>IEC 61300-2-11 | Test temperature:<br>Test pressure:<br>Force per cable:                                                                                                                     | $(+23 \pm 5)^{\circ}C$ Not applicable $10 \text{ N for } \emptyset_{Cable} < 3\text{mm}$ $20 \text{ N for } 3 \text{ mm} \leq \emptyset_{Cable} < 6 \text{ mm}$ $50 \text{ N for } 6 \text{ mm} \leq \emptyset_{Cable} < 10 \text{ mm}$ $100 \text{ N for } 10 \text{ mm} \leq \emptyset_{Cable} < 20 \text{ mm}$ $200 \text{ N for } \emptyset_{Cable} \geq 20 \text{ mm}$ $10 \text{ N for tubes and cables without any strength}$ member attachment For non-circular cables $\emptyset_{cable} =$ circumference/pi | Visual examination                                                                                 |
|                                              | Load application:<br>Rate:<br>Duration:                                                                                                                                     | The distance measured from the cable port or<br>seal of the closure to the point of the load<br>application shall be at maximum two times the<br>cable diameter to prevent cable buckling<br>0 to full load in 15 s, smoothly applied<br>30 minutes per cable                                                                                                                                                                                                                                                         |                                                                                                    |
| Cable bending<br>IEC 61300-2-37              | Test temperatures:<br>Test pressure:<br>Bending angle:<br>Duration at each<br>extreme position:<br>Point of application <sup>2</sup> :<br>Number of cycles:                 | (-15 $\pm$ 2)°C and (+45 $\pm$ 2)°C<br>(40 $\pm$ 2) kPa overpressure sealed off at test<br>temperature<br>At least -30° and +30°<br>5 minutes<br>400 mm from end of seal<br>5 cycles per cable and per test temperature                                                                                                                                                                                                                                                                                               | Visual examination<br>Pressure loss during test<br>Sealing performance after<br>completion of test |
| Cable torsion<br>IEC 61300-2-5               | Test temperature:<br>Test pressure:<br>Torsion angle:<br>Point of application <sup>4</sup> :<br>Duration at each<br>extreme position:<br>Tensile load:<br>Number of cycles: | (-15 $\pm$ 2)°C and (+45 $\pm$ 2)°C<br>(40 $\pm$ 2) kPa overpressure sealed off at test<br>temperature<br>At least - 90° and +90°<br>400mm from end of cable seal sleeve<br>5 minutes<br>None<br>5 per cable and per test temperature                                                                                                                                                                                                                                                                                 | Visual examination<br>Pressure loss during test<br>Sealing performance after<br>completion of test |

<sup>&</sup>lt;sup>4</sup> If an external cable attachment bracket is an integrated part of the protective housing, the distance of application is measured from end of bracket.



### 3.6 Sealing performance requirements (continued)

| Test                                                   | Method and condition                                                                                               | 15                                                                                                                                                                                                                                                                                                             | Acceptance criteria from<br>clause 3.5 to be checked                                                                                   |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Sealing performa                                       | nce tests (continued)                                                                                              |                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |
| Impact<br>IEC 61300-2-12<br>Method B                   | Test temperatures:<br>Test pressure:<br>Impact tool:<br>Weight:<br>Drop height:<br>Location:<br>Number of impacts: | (-15 $\pm$ 2)°C and (+45 $\pm$ 2)°C<br>(40 $\pm$ 2) kPa overpressure sealed off at test<br>temperature<br>Steel ball<br>1 kg<br>2 m<br>Center of closure at 0°, 90°, 180°, 270°<br>rotation along longitudinal axe<br>1 per location and per test temperature                                                  | Visual examination<br>Pressure loss during test<br>Sealing performance after<br>completion of test                                     |
| Crush<br>resistance<br>(Static load)<br>IEC 61300-2-10 | Test temperature:<br>Test pressure:<br>Load:<br>Surface:<br>Location:<br>Duration:                                 | (-15 $\pm$ 2)°C and (+45 $\pm$ 2)°C<br>(40 $\pm$ 2) kPa overpressure sealed off at test<br>temperature<br>1000 N<br>25 cm <sup>2</sup> (circular shape)<br>Center of closure at 0° and 90° rotation<br>along longitudinal axe<br>10 minutes per location and per test<br>temperature                           | Visual examination<br>Pressure loss during test<br>Sealing performance after<br>completion of test                                     |
| Vibration<br>IEC 61300-2-1                             | Test temperature:<br>Test pressure:<br>Frequency:<br>Cycle:<br>Amplitude:<br>Cable clamping:<br>Duration:          | $(+23 \pm 5)^{\circ}$ C<br>(40 ± 2) kPa overpressure regulated<br>(10 ± 1) Hz<br>Sinusoidal<br>3 mm<br>500 mm from end of cable seal sleeve<br>1 000 000 cycles (about 28 h)                                                                                                                                   | Visual examination<br>Sealing performance after<br>completion of test                                                                  |
| Resistance to<br>aggressive<br>media IEC<br>61300-2-34 | Test temperature<br>Test pressure:<br>Media / test time:                                                           | <ul> <li>(+23 ± 5)°C</li> <li>(40 ± 2) kPa overpressure regulated</li> <li>pH2 (HCl) for 5 days, no drying time</li> <li>pH12 (NaOH) for 5 days, no drying time</li> <li>Petroleum jelly for 5 days, no drying time</li> <li>Diesel fuel for 1 h immersion and 24 h drying time at room temperature</li> </ul> | Visual examination No<br>swelling, cracking or<br>permanent deformation<br>allowed.<br>Sealing performance after<br>completion of test |
| Resistance to<br>stress cracking<br>IEC 61300-2-34     | Test temperature:<br>Test pressure:<br>Medium:<br>Duration:<br>Drying time at 70°C                                 | (+50 ± 2)°C<br>(40 ± 2) kPa overpressure regulated<br>10% Nonyl Phenol Ethoxylate solution<br>(Igepal)<br>5 days<br>None                                                                                                                                                                                       | Visual examination. No<br>visible cracking<br>Sealing performance after<br>completion of test                                          |



## 3.6 Sealing performance requirements (continued)

| Test                                                                    | Method and condition                                                                                                                      | s                                                                                                                                                 | Acceptance criteria from clause 3.5 to be checked                                                                                                    |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sealing performa                                                        | nce tests (continued)                                                                                                                     |                                                                                                                                                   |                                                                                                                                                      |
| Salt mist<br>IEC 61300-2-26                                             | Test temperature:<br>Test pressure:<br>Medium:<br>Duration:<br>Test sample:                                                               | (+35 ± 2)°C<br>0 kPa overpressure sealed off at room<br>temperature<br>5% NaCl in water (pH 6,5-7,2)<br>5 days<br>Installed and closed enclosure  | Visual examination. No<br>signs of corrosion, A color<br>change due to passivation<br>is allowed.<br>Sealing performance after<br>completion of test |
| Change of<br>temperature for<br>categories<br>A and G<br>IEC 61300-2-22 | Lowest temperature:<br>Highest temperature:<br>Dwell time:<br>Transition :<br>Internal pressure:<br>Number of cycles:                     | (-40 ± 2)°C<br>(+65 ± 2)°C<br>4 h<br>1 °C/min<br>(20 ± 2) kPa overpressure regulated<br>12                                                        | Visual examination<br>Sealing performance after<br>completion of test                                                                                |
| Change of<br>temperature for<br>category S<br>IEC 61300-2-22            | Lowest temperature:<br>Highest temperature:<br>Dwell time:<br>Transition :<br>Internal pressure:<br>Number of cycles:                     | (-30 ± 2)°C<br>(+60 ± 2)°C<br>4 h<br>1 °C/min<br>(40 ± 2) kPa overpressure regulated<br>12                                                        | Visual examination<br>Sealing performance after<br>completion of test                                                                                |
| Change of<br>temperature in<br>water<br>(no international<br>standard)  | Lowest temperature:<br>Highest temperature:<br>Dwell time:<br>Transition :<br>Internal pressure:<br>Immersion depth:<br>Number of cycles: | $(+10 \pm 2)$ °C<br>$(+55 \pm 2)$ °C<br>4 h<br>0.5 °C/min<br>No overpressure, sealed off at room<br>temperature<br>Just below water surface<br>12 | Visual examination. No signs of water ingress.                                                                                                       |
| Water<br>immersion IEC<br>61300-2-23                                    | Test temperature:<br>Column height:<br>Test pressure:<br>Duration:<br>Wetting agent:                                                      | (+23 ± 5)°C<br>5 m water<br>No overpressure, sealed off at test<br>temperature<br>7 days<br>None                                                  | Visual examination. No signs of water ingress.                                                                                                       |



## 3.7 Optical pass/fail criteria

| Test method                               | Test conditions                           |                                                                                                                  | Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Optical pass/fail c                       | riteria tests                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Change in<br>attenuation<br>IEC 61300-3-3 | Source wavelength:                        | 1310 nm , 1550 nm and<br>1625 nm                                                                                 | For incoming fiber with ITU-T G.652.D<br>fibers:<br>$\delta \le 0.2 \text{ dB}$ during test at 1310 nm and<br>1550 nm and $\delta \le 0.5 \text{ dB}$ during test at<br>1625 nm<br>$\delta \le 0.1 \text{ dB}$ at 1310 nm, 1550 nm and<br>1625 nm after test.<br>For incoming fiber with ITU-T G.657.A1<br>fibers:<br>$\delta \le 0.2 \text{ dB}$ during test at 1310 nm,<br>1550 nm and 1625 nm<br>$\delta \le 0.1 \text{ dB}$ at 1310 nm, 1550 nm and<br>1625 nm after test (=residual loss) |
| Transient loss<br>IEC 61300-3-28          | Source wavelength:<br>Detector bandwidth: | 1550 nm and 1625 nm<br>0-1500 Hz                                                                                 | For incoming fiber with ITU-T G.652.D<br>fibers:<br>$\delta \le 0.5 \text{ dB}$ during test at 1550 nm<br>$\delta \le 1.0 \text{ dB}$ during test at 1625 nm<br>$\delta \le 0.1 \text{ dB}$ at 1310 nm, 1550 nm and<br>1625 nm after test.<br>For incoming fiber with ITU-T G.657.A1<br>fibers:<br>$\delta \le 0.5 \text{ dB}$ during test at 1550 nm and<br>1625 nm<br>$\delta \le 0.1 \text{ dB}$ at 1550 nm and 1625 nm<br>after test (=residual loss)                                      |
| Visual<br>examination<br>IEC 61300-3-1    | Examination of product with naked eye.    | Inspection with the naked<br>eye for flaws, defects,<br>cracks or impurities that<br>could impair functionality. | No defects which would adversely affect product performance or functionality                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### Notes

- The change in attenuation  $\delta$  refers to the +/- deviation from the original value of the transmitted power at the start of the test .
- An "incoming fiber" is defined as a part of an optical circuit containing the fiber entering the product, a connection spliced to a fiber leaving the product. One optical circuit can contain many "incoming fibers". Light will sequentially flow through all the "incoming fibers".



Performance Specification FOSC Modular Splice Closure Page 14 of 20 RUD 5598 A 5 Oct 2021

## 3.8 Optical performance requirements

| Test method                      | Test conditions                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              | Acceptance criteria from<br>clause 3.7 to be checked |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Optical performa                 | nce tests                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                              |                                                      |
| Cable retention<br>IEC 61300-2-4 | Test temperature:<br>Force per cable:<br>Point of application <sup>5</sup> :<br>Rate:                                                     | $(+23 \pm 5)^{\circ}$ C<br>20 (N/mm) x Ø <sub>cable</sub> (mm) for terminations<br>with CTU types S, L or G<br>10 (N/mm) x Ø <sub>cable</sub> (mm) for other cable<br>terminations with metal bracket<br>For non-circular cables, Ø <sub>cable</sub> =<br>circumference/pi<br>400 mm from end of seal<br>measured from cable seal<br>0 to full load in 15 o smoothly applied | Visual examination<br>Transient loss                 |
|                                  | Duration:                                                                                                                                 | 0 to full load in 15 s, smoothly applied<br>1 h per cable                                                                                                                                                                                                                                                                                                                    |                                                      |
| Cable bending<br>IEC 61300-2-37  | Test temperature:<br>Bending angles:<br>Duration at each<br>extreme position:<br>Point of application <sup>4</sup> :<br>Number of cycles: | $(+23 \pm 5)^{\circ}$ C<br>From 0° to -30° to 0° to +30° to 0° (= 1<br>cycle)<br>5 minutes at -30° and +30°<br>400 mm from end of seal<br>5 cycles per cable.                                                                                                                                                                                                                | Visual examination<br>Transient loss                 |
| Cable torsion<br>IEC 61300-2-5   | Test temperature:<br>Torsion angles:<br>Torque application <sup>4</sup> :<br>Duration at each<br>extreme position:<br>Tensile load:       | (+23 ± 5)°C<br>From 0° to -90° to 0° to +90° to 0° (= 1<br>cycle)<br>400 mm from end of seal<br>5 minutes at -90° and +90°<br>None                                                                                                                                                                                                                                           | Visual examination<br>Transient loss                 |

<sup>&</sup>lt;sup>5</sup> If an external cable attachment bracket is an integrated part of the protective housing, the distance of application is measured from end of bracket.



## 3.8 Optical performance requirements (continued)

| Test method                                             | Test conditions                                                                                                                       |                                                                                                                                                                                         | Pass/fail criteria from clause 3.7<br>to be checked                                                                                 |  |  |  |  |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Optical performance tests - continued                   |                                                                                                                                       |                                                                                                                                                                                         |                                                                                                                                     |  |  |  |  |
| Reconfiguration<br>IEC 61300-2-33                       | cables attache<br>2. Open closure.<br>3. Gaining acces<br>fiber managen<br>between the et                                             | re to working location. Handling of<br>d to node.<br>s to previously installed fibers in the<br>nent system by hinging the trays in<br>xtreme positions.<br>ure fiber management system | Transient loss in active circuits in<br>splice trays adjacent to the splice<br>tray with circuits that are<br>reconfigured or added |  |  |  |  |
| Vibration<br>IEC 61300-2-1                              | Test temperature:<br>Sweep range:<br>- crossover frequency:<br>- severity below 9 Hz:<br>- severity above 9 Hz:<br>Axes:<br>Duration: | (+23 ± 5)°C<br>(5 to 500 to 5) Hz at 1 octave/minute<br>9 Hz<br>3.5 mm<br>10 m/s <sup>2</sup> (about 1 g)<br>3 mutually perpendicular<br>10 cycles/axis                                 | Visual examination<br>Transient loss                                                                                                |  |  |  |  |
| <b>Shock</b><br>IEC 61300-2-9                           | Test temperature:<br>Accelleration:<br>Pulse duration:<br>Wave form:<br>Number of shocks:                                             | $(+23 \pm 5)^{\circ}$ C<br>150 m/s <sup>2</sup> (about 15 g)<br>11 milliseconds<br>half sine<br>In total 18 shocks. 3 shocks per axis<br>and per direction of the axis.                 | Visual examination<br>Transient loss                                                                                                |  |  |  |  |
| Change of<br>temperature <sup>6</sup><br>IEC 61300-2-22 | Lowest temperature:<br>Highest temperature:<br>Dwell time:<br>Transition time:<br>Number of cycles:                                   | $(-40 \pm 2)$ °C<br>$(+65 \pm 2)$ °C<br>4 h<br>1 °C / minute<br>12<br>Cycles 1-10: cables out of climatic<br>test chamber,<br>Cycles 11-20: all cables in climatic<br>test chamber      | Examination<br>Change in attenuation                                                                                                |  |  |  |  |

<sup>&</sup>lt;sup>6</sup> If this temperature falls outside the range specified for any of the cables being used, the test temperature must be modified accordingly.



## 4 Quality assurance provisions

#### 4.1 Manufacturing follow-up

Quality provisions are based upon the philosophy of TQM (Total Quality Management) with a system approved to ISO 9001.

#### 4.2 Responsibility for quality

Unless otherwise stated in the customer order, it shall be CommScope' responsibility to assure qualification and lot conformance to this specification. CommScope may utilize its own or other testing and inspection facilities acceptable to the customer.

#### 4.3 Qualification conformance

For the purposes of internal qualification, the program shall consist of examinations and tests to determine conformance with the requirements of this specification.

It shall be performed once, on introduction of the product.

Subsequent design changes shall be partially or fully re-qualified depending upon their area of impact in the context of product functionality.

Regular requalification testing shall be performed as defined by the Quality Department.

#### 4.4 Manufacturing follow-up

CommScope products target Six Sigma levels of performance by the integration of capable processes from the development throughout the entire supply chain. The goal is to reduce variability to achieve zero defects for products and services. Systems used are based on preventive and statistical techniques during development and manufacturing.

This also includes suppliers of materials, components or systems. Dedicated procedures for supplier selection, development and follow-up are implemented to ensure conformance to TQM and specification requirements.

Best demonstrated practices are identified and implemented throughout the company, with a continuing challenge to identify opportunities for innovation and improvement.

# COMMSCOPE®

## **5** References

| Reference *             | Title                                                                  |
|-------------------------|------------------------------------------------------------------------|
| ASTM G.21 (2015)        | Standard Practice for Determining Resistance of Synthetic Polymeric    |
| ( )                     | Materials to Fungi                                                     |
| ASTM G.154 (2016)       | Standard Practice for Operating Fluorescent Ultraviolet (UV) Lamp      |
| ( )                     | Apparatus for Exposure of Nonmetallic Materials                        |
| EN 50411-2-4 (2012)     | Fibre organisers and closures to be used in optical fibre              |
|                         | communication systems - Product specifications - Part 2-4: Sealed      |
|                         | dome fibre splice closures Type 1, for category S & A                  |
| ETSI EN 300-019-series  |                                                                        |
| ETSI EN 300-019-Selles  | Equipment engineering (EE); environmental conditions and               |
|                         | environmental tests for telecommunications equipment;                  |
| ETSI EN 300-019-2-1     | Part 2-1: Specification of environmental tests-Storage                 |
| (2014)                  |                                                                        |
| ETSI EN 300-019-2-2     | Part 2-2: Specification of environmental tests-Transportation          |
| (2013)                  |                                                                        |
| ETSI EN 300-019-2-4     | Part 2-4: Specification of environmental tests; stationary use at non- |
| (2015)                  | weather protected locations                                            |
| ETSI EN 300-019-2-8     | Part 2-8: Stationary use at underground locations                      |
| (1990)                  |                                                                        |
| IEC 60068-2-10 (2005) + | Environmental testing - Part 2-10: Tests - Test J and guidance: Moul   |
| AMD1 (2018)             | growth                                                                 |
| IEC 60529 (1989)        | Degrees of protection provided by enclosures (IP code).                |
| +AMD1:1999              |                                                                        |
| +AMD2:2013              |                                                                        |
| IEC 60793-2-50 (2018)   | Optical fibers - Part 2-50: Product specifications - Sectional         |
|                         | specification for class B single-mode fibers                           |
| IEC 60950-1 (2013)      | Information technology equipment - Safety - Part 1: General            |
|                         | requirements                                                           |
| IEC 61300-series        | Fiber-optic interconnecting devices and passive components.            |
| IEC 61300-1 (2016)      | General and guidance                                                   |
| IEC 61300-2-series      | Part 2: basic test and measurement procedures:                         |
| IEC 61300-2-1 (2009)    | Vibration (sinusoidal).                                                |
| IEC 61300-2-4 (2019)    | Fiber/cable retention.                                                 |
| + AMD1 (2019)           |                                                                        |
| IEC 61300-2-5 (2009)    | Torsion                                                                |
| IEC 61300-2-9 (2010)    | Shock.                                                                 |
|                         | Crush and load resistance                                              |
| IEC 61300-2-10 (2021)   |                                                                        |
| IEC 61300-2-11 (2012)   | Axial compression                                                      |
| IEC 61300-2-12 (2009)   | Impact                                                                 |
| IEC 61300-2-22 (2007)   | Change of temperature.                                                 |
| IEC 61300-2-23 (2010)   | Water Immersion                                                        |
| IEC 61300-2-26 (2006)   | Salt mist                                                              |
| IEC 61300-2-33 (2012)   | Assembly and disassembly of closures.                                  |
| IEC 61300-2-34 (2009)   | Resistance to Solvents and Contaminating Fluids.                       |
| IEC 61300-2-37 (2016)   | Cable Bending for Closures.                                            |
| IEC 61300-2-38 (2006)   | Sealing for Pressurized Closures of Fiber Optic Devices                |
| IEC 61300-3-series      | Part 3: examination and measurements.                                  |
| IEC 61300-3-1 (2005)    | Visual examination.                                                    |
| IEC 61300-3-3 (2009)    | Monitoring change in attenuation and in return loss (multiple paths).  |
| IEC 61300-3-28 (2012)   | Transient loss.                                                        |
| IEC 61753-1 (2018) +    | Fibre optic interconnecting devices and passive components -           |
| COR1 (2019)             | Performance standard - Part 1: General and guidance                    |
| IEC 61753-111-07 (2021) | Fibre optic interconnecting devices and passive components -           |
|                         | Performance standard - Part 111-07: Sealed closures - Category A -     |
|                         |                                                                        |

## COMMSCOPE® Performance Specification FOSC Modular Splice Closure

| IEC 61753-111-08 (2021) | Fibre optic interconnecting devices and passive components -            |
|-------------------------|-------------------------------------------------------------------------|
|                         | Performance standard - Part 111-08: Sealed closures for category G -    |
|                         | Ground                                                                  |
| IEC 61753-111-09 (2021) | Fibre optic interconnecting devices and passive components -            |
|                         | Performance standard - Part 111-09: Sealed closures - Category S -      |
|                         | Subterranean                                                            |
| IEC 61756-1 (2019)      | Fibre optic interconnecting devices and passive components -            |
|                         | Interface standard for fibre management systems - Part 1: General       |
|                         | and guidance                                                            |
| IEC 62368-1 (2018)      | Audio/video, information and communication technology equipment -       |
|                         | Part 1: Safety requirements                                             |
| ISO 846 (2019)          | Resistance of Synthetic Polymeric Materials to Fungi and Bacteria.      |
| ISO 4892-3 (2016)       | Plastics — Methods of exposure to laboratory light sources — Part 3:    |
|                         | Fluorescent UV lamps                                                    |
| ISO 1998/1 (1998)       | Petroleum Industry - Vocabulary - Part 1.                               |
| ISO 9001                | Quality Management Systems - Requirements.                              |
| ITU-T G.652 (2013)      | Characteristics of single-mode fiber optic cable.                       |
| ITU-T.G 657 (2012)      | Characteristics of a bending loss insensitive single mode optical fiber |
|                         | and cable for the access network                                        |
| ITU-T L.201 (2021)      | Performance requirements for passive optical nodes: Sealed closures     |
|                         | for outdoor environments                                                |
| RUD 5416                | Singlemode Optical Fiber Connectors, Pigtails, Patchcords and           |
|                         | Adapters with ITU-T G.657 Fiber                                         |

The documents listed here shall form a part of this specification. The non dated versions, in effect at the date of issue of this specification, shall apply. Other equivalent national standards may be used as substitutes for international ones.

\* Copies of the documents referred to may be obtained from

| ASTM      | American Society for Testing and Materials                               | www.astm.org                            |
|-----------|--------------------------------------------------------------------------|-----------------------------------------|
| EN        | European Committee for Electrotechnical Standardization                  | www.cenelec.org                         |
| ETS       | European Telecommunications Standards Institute                          | www.etsi.org                            |
| IEC       | International Electrotechnical Commission                                | www.iec.ch                              |
| ISO       | International Standards Organisation                                     | www.iso.ch                              |
| ITU<br>UL | International Telecommunications Union<br>Underwriters Laboratories Inc. | www.iso.cm<br>www.itu.int<br>www.ul.com |





www.CommScope.com Diestsesteenweg 692 B-3010 Kessel-Lo Belgium

Visit our website or contact your local CommScope representative for more information.

© 2020 CommScope, Inc. All rights reserved. All trademarks identified by ® or ™ are registered trademarks or trademarks, respectively, of CommScope, Inc.

OptiTap is a registered trademark of Corning Cable Systems Solutions. This document is for planning purposes only and is not intended to modify or supplement any specifications or warranties relating to CommScope products or services.