VHLP2-X8015

0.6 m I 2 ft ValuLine® High Performance Low Profile Antenna, dual band, dual polarised 71.000 - 86.000 GHz and single polarised 14.400 15.350 GHz

Product Classification

Product Type
 Product Brand
 General Specifications

Microwave antenna
ValuLine®

Antenna Type

Side Struts, Included
Side Struts, Optional

Dimensions

Diameter, nominal

Electrical Specifications

Operating Frequency Band

Gain, Low Band
Gain, Mid Band
Gain, Top Band
Boresite Cross Polarization Discrimination (XPD) 30 dB
Front-to-Back Ratio
Beamwidth, Horizontal 0.5°
Beamwidth, Vertical 0.5°
Return Loss 15 dB
VSWR 1.4
Radiation Pattern Envelope Reference (RPE)
Electrical Compliance
$71.000-86.000 \mathrm{GHz}$
48.5 dBi
49.7 dBi

51 dBi

68 dB 7446
VHLP - ValuLine® High Performance Low Profile Antenna, dual band

0
0
$0.6 \mathrm{~m} \mid 2 \mathrm{ft}$

Canada SRSP 371.0 Part A | ETSI 302 217 Class 3 | US

VHLP2-X8015

FCC Part 101.115

Electrical Specifications, Band 2

Operating Frequency Band
Gain, Low Band
Gain, Mid Band
Gain, Top Band
Beamwidth, Horizontal
Beamwidth, Vertical
Boresite Cross Polarization Discrimination (XPD)
Boresite Cross Polarization Discrimination (XPD) Note
Electrical Compliance

Front-to-Back Ratio
Radiation Pattern Envelope Reference (RPE)
Return Loss
VSWR

Mechanical Specifications

Compatible Mounting Pipe Diameter
Fine Azimuth Adjustment Range
Fine Elevation Adjustment Range
Wind Speed, operational
Wind Speed at 23 GHz, operational
Wind Speed at 80 GHz, operational
Wind Speed, survival
$14.400-15.350 \mathrm{GHz}$
36.8 dBi
37.1 dBi
37.5 dBi
2.5°
2.5°
30 dB
30 dB typical and subject to change without notice
Canada SRSP 314.5C | ETSI 302217 Class 3 | US FCC Part 101A

65 dB
7445
15 dB
1.43
$50 \mathrm{~mm}-115 \mathrm{~mm}$ | $2.0 \mathrm{in}-4.5 \mathrm{in}$
$\pm 9^{\circ}$
$\pm 15^{\circ}$
201 km/h | 124.896 mph
180 km/h | 111.847 mph
144 km/h | 89.477 mph
250 km/h | 155.343 mph

Antenna Dimensions and Mounting Information

VHLP2-X8015

Dimensions in mm (Inches)							
Antenna Size, $\mathrm{f}(\mathrm{m})$	A	B	C	D	E	F	
$2(0.6)$	$660(25.9)$	$309(12.2)$	$279(10.9)$	$106(4.2)$	$459(18.1)$	$505(19.8)$	

Wind Forces at Wind Velocity Survival Rating

Axial Force (FA)

Side Force (FS)
Twisting Moment (MT)
Zcg without Ice
$1693 \mathrm{~N} \mid 380.602 \mathrm{lbf}$
814 N | 182.995 lbf
756 N-m | 6,691.164 in lb
$8 \mathrm{~mm} \mid 0.315 \mathrm{in}$

VHLP2-X8015

Wind Forces at Wind Velocity Survival Rating Image

Packaging and Weights

Volume

Weight, gross
Weight, net

* Footnotes

Operating Frequency Band

Gain, Mid Band

Bands correspond with CCIR recommendations or common allocations used throughout the world. Other ranges can be accommodated on special order.

For a given frequency band, gain is primarily a function of antenna size. The gain of Andrew antennas is determined by either gain by comparison

VHLP2-X8015

Boresite Cross Polarization Discrimination (XPD)	The difference between the peak of the co-polarized main beam and the maximum cross-polarized signal over an angle twice the 3 dB beamwidth of the co-polarized main beam.
Front-to-Back Ratio	Denotes highest radiation relative to the main beam, at $180^{\circ} \pm 40^{\circ}$, across the band. Production antennas do not exceed rated values by more than 2 dB unless stated otherwise.
Return Loss	The figure that indicates the proportion of radio waves incident upon the antenna that are rejected as a ratio of those that are accepted.
VSWR	Maximum; is the guaranteed Peak Voltage-Standing-Wave-Ratio within the operating band.
Radiation Pattern Envelope Reference (RPE)	Radiation patterns define an antenna's ability to discriminate against unwanted signals. Under still dry conditions, production antennas will not have any peak exceeding the current RPE by more than 3dB, maintaining an angular accuracy of $+/-1^{\circ}$ throughout
Radiation Pattern Envelope Reference (RPE)	Radiation patterns define an antenna's ability to discriminate against unwanted signals. Under still dry conditions, production antennas will not have any peak exceeding the current RPE by more than 3dB, maintaining an angular accuracy of $+/-1^{\circ}$ throughout
Wind Speed, operational	For VHLP $(X), \operatorname{SHP}(X), H X$ and USX antennas, the wind speed where the maximum antenna deflection is $0.3 \times$ the 3 dB beam width of the antenna. For other antennas, it is defined as a deflection is equal to or less than 0.1 degrees.
Wind Speed, survival	The maximum wind speed the antenna, including mounts and radomes, where applicable, will withstand without permanent deformation. Realignment may be required. This wind speed is applicable to antenna with the specified amount of radial ice.
Axial Force (FA)	Maximum forces exerted on a supporting structure as a result of wind from the most critical direction for this parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.
Side Force (FS)	Maximum side force exerted on the mounting pipe as a result of wind from the most critical direction for this parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.
Twisting Moment (MT)	Maximum forces exerted on a supporting structure as a result of wind from the most critical direction for this parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

